
知识库 > Developer & Reporting > Reports : DPQL Reference

Reports : DPQL Reference
Matthew Wray - 2023-09-27 - Comments (0) - Developer & Reporting

Anatomy of a DPQL query

Reports in the report builder are written using the Deskpro Query
Language, known as DPQL. It is similar to SQL, but you don’t need to know
SQL to use it.

Select any Stat in the Stat Builder and click the Edit Stat button to see
its DPQL query.

DPQL queries consists of a series of clauses:

SELECT select expression
FROM database table

https://support.deskpro.com/zh-CN
https://support.deskpro.com/zh-CN/kb
https://support.deskpro.com/zh-CN/kb/developer-reporting
https://support.deskpro.com/zh-CN/kb/articles/reports-dpql-reference-1
https://support.deskpro.com/zh-CN/kb/developer-reporting

[WHERE conditions]
[SPLIT BY split fields]
[GROUP BY group fields]
[ORDER BY order fields]
[LIMIT amount [OFFSET offset amount]]

[LAYER WITH another query]

[IN subquery]

Clauses in [square brackets] are optional.

Italic text is a placeholder for a value that you enter.

SELECT

The SELECT clause works with the WHERE clause to define what
information you want your report to include. It often contains field
references which specify the data you want to retrieve from the table you
choose in the FROM clause.

Your SELECT clause would be a comma-separated list of column
references:
SELECT tickets.id, tickets.subject, tickets.person, tickets.department,
tickets.date_created, tickets.agent

The SELECT clause can also use DPQL functions.

For example, suppose you didn’t want a detailed table of all matching
tickets, just the total number. You would use the DPQL_COUNT() function
to count the total number of matching tickets.
SELECT DPQL_COUNT()

In table output, the header text for a column is automatically derived from
the SELECT used to produce the column. This may not always result in a
good column name; for example, if you just used SELECT DPQL_COUNT(),
you’ll produce a table like this:

You can use an alias to specify a better name for a column.
DPQL_COUNT() AS 'Total Created'

would make the result display like this:

FROM

The MySQL database which stores all your helpdesk data is organised into
a series of tables. For example, the tickets table stores information about tickets.

The FROM clause specifies which database table your DPQL query is
asking about. You can only pick one table.

All column references in the query must start with the table name specified
in the FROM clause.

The tables available are listed here.

WHERE

The conditions in the optional WHERE clause are used to limit what data is
displayed or used in a calculation.

For example, if your query was

https://support.deskpro.com/en-US/guides/reports-guide/dpql-field-reference

SELECT tickets.id
FROM tickets

you’d get a table with all ticket’s ID.

But with:
SELECT tickets.id
FROM tickets
WHERE tickets.status = 'awaiting_agent'

you’d get a table with the IDs of just the tickets with a status of Awaiting
Agent.

Conditions can be joined by operators such as AND, OR, NOT, IN and
parentheses (brackets) to make complex expressions.

IN is useful if you want to match any one of a number of different values.
For example:
WHERE tickets.status IN ('awaiting_agent','awaiting_user')

will return all tickets with either Awaiting Agent or Awaiting User status.
tickets.labels.label != NULL

SPLIT BY

The optional SPLIT BY clause enables you split the results into separate
tables/graphs by providing split field values.

For example, if you wanted to display each agent’s matching tickets for a
query in a separate table, you’d use:
SPLIT BY tickets.agent

and the result would look like this:

with a separate table for each agent.

You can use multiple split fields by providing a comma-separated list of
expressions. This will result in separate tables for each combination of of
the fields you provide, with separate tables for Agent A/Department A,
Agent A/Department B, Agent B/Department A, etc.

GROUP BY

The GROUP BY clause is used to group records that have the same values
for the specified fields.

For example, you can group by ticket labels:
SELECT DPQL_COUNT() AS 'Total Tickets'
FROM tickets
WHERE tickets.status = 'awaiting_agent'
GROUP BY tickets.labels

In the output, tickets with the same label are grouped together:

You can also use groups to do calculations such as determining totals and
averages.

The group by fields will automatically be displayed in the resulting table,
so there is no need to add them to the SELECT clause.

As in the SELECT clause, group fields can be aliased with AS 'Label' to
change the name of the table header row.

To create a matrix table, use the DPQL_MATRIX() function in the GROUP
BY clause to specify two groups. The first specifies the values going across
the top of the table, while the second controls the values going down the
left side.

ORDER BY

The ORDER BY clause determines how the rows will be ordered when they
are returned. If no order is given, the results will be displayed in an
undefined order.

The order fields are comma-separated expressions. Ordering will happen
across the fields from left to right (ordering by the first expression, then
using the second to resolve ties, and so on). Each expression may
optionally have ASC or DESC appended to it to control whether ordering is in ascending or descending
order. (Ascending is the default if no direction is specified).

For example:
ORDER BY SUM(tickets.total_user_waiting) DESC

would order a list of users or organizations by their total waiting time, with
the highest waiting time at the top.

The ORDER BY clause can access aliases that were specified in the
SELECT or GROUP BY clauses using the syntax @'alias' (for example: @'Total
Tickets'). Referencing an alias causes the results to be ordered as if you had written the aliased expression
in the ORDER BY clause.

For example, suppose you want to make a table showing how many tickets
each agent has, sorted in descending order:
SELECT DPQL_COUNT() AS 'Tickets'
FROM tickets
GROUP BY tickets.agent
ORDER BY @'Tickets' DESC

LIMIT / OFFSET

The LIMIT clause enables you to limit the number of rows returned. If you
don’t specify a limit amount, a default limit of 2500 will be used to ensure
correct operation.

You can use the OFFSET clause to skip over a certain number of rows
before returning the LIMIT amount of rows. The OFFSET defaults to 0.

LAYER WITH

LAYER WITH allows you to combine two different queries into one. For
example:
SELECT DPQL_COUNT(*), tickets.department
FROM tickets
WHERE tickets.date_created = %TODAY%
GROUP BY tickets.department

LAYER WITH

SELECT DPQL_COUNT(*), tickets.department
FROM tickets
WHERE tickets.date_created = %YESTERDAY%
GROUP BY tickets.department

IN

You can use IN to create subqueries. For example:

SELECT tickets.id
FROM tickets
WHERE tickets.id IN (
 SELECT tickets.id
 FROM tickets

 WHERE tickets.ref LIKE 'AAAA-%'
)

General expression format

Most clauses of a DPQL statement accept a general expression format. You
can use expressions to carry out more complicated queries.

Complex expressions are made up of smaller, simpler expressions.
Expressions are made up of the following components:

Type Example Details

Numbers 5, 37.4 Simple, literal references to
integer or decimal values

Strings ‘string’ or “string”
Strings are literal references to
text. These will commonly be
used in tests/comparisons and
aliases.

Null tickets.labels.label != NULL
You can use this in tests to check
whether a certain value exists. If
a certain value has been set, it
will be not equal to NULL.

Parentheses (tickets
+ chat_conversations)/agents

Parentheses are used to enforce
the order in which the
expression is evaluated.

Column
references table.col[.col2…]

Column references directly
retrieve data from your
helpdesk. tickets.subject and
tickets.agent.name are both
valid column references. You can
use multiple column parts to
combine data from different
tables based on a shared field
between them (the equivalent of
an SQL join). For example,
tickets.person.organization.name
which would retrieve the name
of the organization the person
that started the ticket belongs
to.

Function
calls

COUNT(), CURDATE(),
MATRIX(group X, group y)

These are useful functions, for
example doing calculations on
the inputs (arguments) you give
them, changing formatting, or
retrieving information. COUNT()
is a function. Some functions
don’t need any input, e.g.
CURDATE() just gets the current
date.

Comparisons (expression) =, !=, >=, >, <,
<=

Enable you to compare two
expressions
e.g. tickets.count_agent_replies
>= 10 checks if the number of
agent replies on a ticket is
greater than or equal to 10. If
the comparison is true, the value
of the comparison = 1. If it’s
false, it = 0.

Placeholders %TODAY%, %LAST_YEAR%

Placeholders are dynamic
elements of a DPQL query that
are automatically updated to the
appropriate value when the
query is run. They are useful in
comparisons e.g. you can use
tickets.created_date =
%PAST_7_DAYS% would match
tickets created over the last 7
days. Note that these are
relative to the local time, e.g.
%TODAY% means the current
day in the timezone set in your
agent preferences.

Logic AND, OR Used to logically combine two
expressions.

Date and time references

There are two ways to reference dates and times in your queries:

absolute dates/times: e.g. 31st October 2013, or 11am on 1 May
2014

relative time periods using placeholders: e.g. %LAST_WEEK%

To avoid confusion, it’s best to avoid combining absolute and relative
dates/times in one query.

Absolute dates and times

Absolute dates/times can be referenced in two formats:

YYYY-MM-DD - e.g. 2013-10-31; refers to a date only. This implicitly has a time of 00:00:00 of
the specified day.

YYYY-MM-DD HH:MM:SS - e.g. 2012-10-31 23:35:52; refers to a date and a
specific time in 24-hour format.

Note that you must specify these dates in the UTC timezone - however, the
results returned will be shown adjusted to your timezone (as set in

the Preferences section of the agent interface).

This is an example DPQL query to list the tickets created from October 1st
to 15th, 2012 in UTC:
 SELECT tickets.id
 FROM tickets
 WHERE tickets.date_created >= '2012-10-01'
 AND tickets.date_created < '2012-10-16'

In date/time comparisons, > (greater than) matches dates/times that
are later, and < (less than) matches dates/times earlier.

You can add or subtract periods of time using the MySQL INTERVAL
argument. For example:
'2012-10-01' + INTERVAL 2 WEEK

means a date/time two weeks after October 1st 2012.

You can use INTERVAL 4 HOUR, INTERVAL 3 DAY, INTERVAL 1
MONTH, INTERVAL 2 YEAR etc.

This is useful when adjusting absolute dates to match your timezone. If you
wanted to adjust the above example query to find tickets created from
October 1st to 15th Eastern Standard Time, you could change it to:
 WHERE tickets.date_created >= '2012-10-01' + INTERVAL 5 HOUR
 AND tickets.date_created < '2012-10-16' + INTERVAL 5 HOUR

This adjusts the times from UTC to 5 hours later, ie EST.

A timezone that is behind UTC needs the time difference added to the
comparison date/time; a timezone that is ahead needs the time difference
subtracted.

Relative dates with placeholders

It’s often more useful to have a report that matches helpdesk data for a
relative time period, e.g. the current week or the last month, rather than
specific dates.

You can write a report like this using date placeholders such
as %LAST_WEEK%.

For example, if your WHERE clause is:
WHERE tickets.date_created = %PAST_24_HOURS%

it will match all the tickets created within the 24 hours before you run the
query.

Note that you use = (equals sign) with placeholders, not < or > as you do
with absolute dates/times.

Placeholders use your timezone, as set in your agent account Preferences.

For example, if you run a query to find all the tickets created %TODAY%, it
will match all the tickets since the current day began in your timezone.

If there isn’t a placeholder for the interval you need, you can use the SQL
NOW function to get the current date, then subtract an INTERVAL.

List of date placeholders

%EVER% A range covering any date.

%LAST_WEEK%
A range covering the entirety of the previous
week, based on a new week starting on a Monday.
For example, if today is Wednesday the 12th, this
will match Monday the 3rd to Sunday the 9th.

%LAST_MONTH%
A range covering the entirety of the previous
month. For example, if today is any day in
September 2012, this placeholder will match all of
August 2012.

%LAST_YEAR%
A range covering the entirety of the previous year.
For example, if today is any day in 2012, this
placeholder will match all of 2011.

%PAST_HOUR% A range covering the hour prior to the time when
the report is run.

%PAST_12_HOURS% A range covering the 12 hours prior to the time
when the report is run.

%PAST_24_HOURS% A range covering from exactly 24 hours ago until
when the report is run.

%PAST_7_DAYS% A range covering the 7 full days prior to the day
when the report is run.

%PAST_30_DAYS% A range covering the 30 full days prior to the day
when the report is run.

%PAST_6_MONTHS% A range covering the 6 months prior to the day
when the report is run.

%PAST_12_MONTHS% A range covering the 12 months prior to the day
when the report is run.

%THIS_WEEK%
A range covering the entirety of the current week,
from 00:00 on the first day until 23:59 on the last
day. Weeks are assumed to start on a Monday and
end on a Sunday

%THIS_MONTH%
A range covering the entirety of the current
month, from 00:00 on the first day until 23:59 on
the last day.

%THIS_YEAR%
A range covering the entirety of the current
calendar year, from 00:00 on the first day until
23:59 on the last day.

%TODAY% A range covering the entirety of the current day.
%TOMORROW% A range covering the entirety of the next day.

%YESTERDAY% A range covering the entirety of the previous day.

Remember, placeholders use your timezone, as set in your agent
account Preferences.

If you have agents in different timezones, they can get different results
from queries that use date placeholders.

Dates from custom fields

If you’re retrieving a date stored in a custom field, it is stored as an
integer timestamp rather than real date types, so you need to pass it
through the FROM_UNIXTIME function first, e.g.:
SELECT
 DATE_FORMAT(FROM_UNIXTIME(tickets.custom_data[1]), '%Y-%m-%d') AS 'Date'

List of functions

DPQL_COUNT([condition])

Counts the total number of
rows matched by the query or
current group. If a condition is
provided, counts the number
of rows in the query or
current group that match the
condition.

DPQL_COUNT_DISTINCT(expression)

Counts the total number
distinct values for the given
expression within the rows
matched by the query or
current group.

DPQL_CURDATE()
Gets the current date in the
time zone of the person
running the query.

DPQL_CURTIME()
Gets the current time in the
time zone of the person
running the query.

DPQL_DATE_OFFSET_GROUP(seconds)

Groups a date
offset/difference in seconds
into human-readable ranges
(0–15 minutes, 15–30 minutes,
etc).

DPQL_DATE_OFFSET_GROUP(to date,
from date)

Displays the difference
between the two provided
dates as human-readable
ranges (0–15 minutes, 15–30
minutes, etc).

DPQL_FORMAT(value, format)

formats the value into the
specified format. Possible
formats include boolean,
number, numberraw,
datetime, date, time, year,
percent, string.

DPQL_JSON_EXTRACT

This function operates in a
similar way to MySQL's
JSON_EXTRACT. It lets you
SELECT a field in the
database that is stored as
JSON, and extract a specific
value for it for display.

DPQL_LINK(value, link[, params..])

Links to value using the URL
provided in link. Placeholders
in link are replaced by the
additional params.
Placeholder values should be
represented in sprintf format.

DPQL_MATRIX(group X, group Y)

If both provided groups are
non-null creates a matrix table
from them. Otherwise, it
creates a standard grouped
table.

DPQL_NOW()
Gets the current date and time
in the time zone of the person
running the query.

DPQL_PERCENT(condition[, decimals])

determines the percentage of
total rows or rows within the
current group that match the
condition The results are
displayed as a percentage
with decimals controlling the
precision. 2 decimals are
shown by default.

DPQL_PERCENT(sql, printed)

gets the sql but ensures that
printed is used if the value is
ever going to be displayed.
This is mostly helpful in the
GROUP BY clause where you
need to group on one
expression but display the
results of another.

DPQL_TO_UTC(date) converts date to UTC from the
current person’s time zone.

DPQL_UTC(expression)
ensures that all dates and
times within this function are
calculated using UTC. This
can increase performance.

A large number of functions are also available that have the exact same
behavior as their :

'ABS'
'ACOS'
'ADDDATE'
'ADDTIME'
'ASCII'
'ASIN'
'ATAN'
'ATAN2'
'AVG'
'BIN'
'BIT_AND'
'BIT_COUNT'
'BIT_LENGTH'
'BIT_OR'
'BIT_XOR'
'CEIL'
'CEILING'
'CHAR'
'CHAR_LENGTH'
'CHARACTER_LENGTH'
'COALESCE'
'CONCAT'
'CONCAT_WS'
'CONV'
'COS'
'COT'
'CRC32'
'DATE_FORMAT'
'DATEDIFF'
'DAYOFYEAR'
'DAY'
'DEGREES'
'ELT'
'EXP'
'EXPORT_SET'
'FIELD'
'FIND_IN_SET'

'FLOOR'
'FORMAT'
'FROM_DAYS'
'FROM_UNIXTIME'
'GREATEST'
'GROUP_CONCAT'
'HEX'
'IF'
'IFNULL'
'INET_ATON'
'INET_NTOA'
'INSERT'
'INSTR'
'INTERVAL'
'ISNULL'
'LAST_DAY'
'LCASE'
'LEAST'
'LEFT'
'LENGTH'
'LN'
'LOCATE'
'LOG10'
'LOG2'
'LOG'
'LOWER'
'LPAD'
'LTRIM'
'MAKE_SET'
'MAKEDATE'
'MAKETIME'
'MAX'
'MICROSECOND'
'MID'
'MIN'
'MOD'
'NOW'
'NULLIF'
'OCT'
'OCTET_LENGTH'
'ORD'
'PERIOD_ADD'
'PERIOD_DIFF'
'POW'

'POWER'
'QUARTER'
'RADIANS'
'RAND'
'REPEAT'
'REPLACE'
'REVERSE'
'RIGHT'
'ROUND'
'RPAD'
'RTRIM'
'SEC_TO_TIME'
'SECOND'
'SIGN'
'SIN'
'SOUNDEX'
'SPACE'
'SQRT'
'STDDEV_POP'
'STDDEV_SAMP'
'STR_TO_DATE'
'STRCMP'
'SUBDATE'
'SUBSTR'
'SUBSTRING'
'SUBSTRING_INDEX'
'SUBTIME'
'SUM'
'TAN'
'TIME'
'TIME_FORMAT'
'TIME_TO_SEC'
'TIMEDIFF'
'TIMESTAMP'
'TO_DAYS'
'TO_SECONDS'
'TRIM'
'TRUNCATE'
'UCASE'
'UNHEX'
'UNIX_TIMESTAMP'
'UPPER'
'UTC_DATE'
'UTC_TIME'

'UTC_TIMESTAMP'
'VAR_POP'
'VAR_SAMP'
'WEEK'
'WEEKDAY'
'WEEKOFYEAR'
'YEARWEEK'
'CURRENT_DATE'
'CURRENT_TIME'
'CURRENT_TIMESTAMP'
'CONVERT_TZ'

Variables

When creating custom reports, you can set up specific values to be
dynamically replaced by the user’s selection from a pull-down menu.

The same mechanism is used in the built-in reports which have pulldowns
to choose a date range, ticket property, grouping field, order, etc.

Each variable has two components:

The title - this is how you define the title of the variable. For example,
adding articles.views.date_created = ${date} to a query, would make
${date} the title of the variable for dynamic replacement.

The query - this is where the actual variable is defined to run the correct
query. You can build these queries using the variable builder by clicking
the 'add variable button'.

The available variables are as follows:

Date Ranges

Possible defaults:

today, yesterday, this_week, this-month, this_year, last_week, last_month,
last_year, past_24_hours, past_7_days, past_30_days, ever

Ticket Statuses

Possible defaults:

awaiting_user, awaiting_agent, unresolved, resolved, hidden, any

Field Groups

Possible defaults:

department, agent, agent_team, person, organization, language,
usergency, category, priority, workflow, sla, sla_status, hour_created,
day_week_created, day_month_created, month_created,
year_created, ticketfield# (for custom ticket fields), personfield# (for
custom person fields), orgfield# (for custom organization fields), none

Ordering

Possible defaults:

date_created_asc, date_created_desc, last_agent_reply_asc,
last_agent_reply_desc, last_user_reply_asc, last_user_reply_desc,
total_waiting_asc, total_waiting_desc

