
Kunskapsbas > Using Deskpro > Understanding Check Expressions in Deskpro

Understanding Check Expressions in Deskpro
Kim - 2025-09-09 - Kommentarer (0) - Using Deskpro

What are Check Expressions?
Check expressions are a type of condition you can add to triggers in Deskpro. They use expression language to
evaluate ticket data and the event context, which allows you to create rules that go beyond what the standard
trigger criteria can do.

For example, check expressions allow you to:

Reference objects on the ticket: e.g.

ticket.getLastReply().getPerson().is_agent == false checks the Reply object on the ticket,
looks at the Person object who sent it, and confirms whether that person is not an agent (meaning the
reply came from a user).

Compare values across multiple fields: e.g.

ticket.getCustomDataForField(248).value >
ticket.getCustomDataForField(249).value to see if one custom field is greater than another.
(Only works on date and number fields)

Use functions to retrieve details about the person: e.g.

ticket.agent.id === context.getPersonContext().id to check if the agent assigned to the
ticket is the one who performed the action.

Create conditions based on time or event context: e.g.

ticket.getLastReply().getDateCreated().getTimestamp() > 1703376000 and
ticket.getLastReply().getDateCreated().getTimestamp() < 1704153600 to only run a
trigger within a certain date. (Such as Christmas, in this example)

They follow Symfony’s expression language syntax.

Why Use Check Expressions Instead of Regular
Criteria?
Regular trigger criteria are simple and user-friendly. They cover common scenarios, such as checking if a ticket
belongs to a department or if its status has changed.

Check expressions come into play when:

You need comparisons across fields, not just a single field.

You want to run triggers within a date or time range.

https://support.deskpro.com/sv
https://support.deskpro.com/sv/kb
https://support.deskpro.com/sv/kb/using-deskpro
https://support.deskpro.com/sv/kb/articles/understanding-check-expressions-in-deskpro
https://support.deskpro.com/sv/kb/using-deskpro
https://symfony.com/doc/2.x/components/expression_language/syntax.html


You need to reference the event performer or context of the action.

You need more flexibility than the standard drop-down criteria provide.

In short: standard trigger criteria handle most situations, while check expressions let you build more precise or
complex rules.

Scope and Limitations

Check expressions can only reference objects directly linked to the ticket (such as the ticket itself,
replies, or the agent/user context).

They cannot query data outside the ticket’s scope (for example, you can’t directly pull unrelated
organisation details unless tied to the ticket).

You build check expressions using the ticket-specific context, such as the ticket’s department, the ID of
the person who last replied, or functions to look up and compare information related to the ticket.

Examples of Check Expressions
Expression / Method Purpose Example What it

does

ticket.getCustomDataForField(ID).value
Accesses the value of
a custom field by its
numeric ID.

ticket.getCustomDataForField(248).value >
ticket.getCustomDataForField(249).value

Runs only
if the value
of field 248
is greater
than the
value of
field 249.
Works only
with
number or
date fields.

ticket.getLastReply().getDateCreated().getTimestamp()
Returns the Unix
timestamp of the last
reply.

ticket.getLastReply().getDateCreated().getTimestamp()
> 1703376000 and
ticket.getLastReply().getDateCreated().getTimestamp()
< 1704153600

Ensures
the trigger
fires only if
the last
reply was
created
between
two dates
(e.g.
during
Christmas).

ticket.agent.id with context.getPersonContext().id
Compares the
assigned agent with
the person who
performed the event.

ticket.agent.id === context.getPersonContext().id

Runs only
if the agent
assigned to
the ticket
is the same
person who
performed
the action.

context.getEmailContext()

Fetches the email
context (only valid if
hasEmailContext()
is true).

hasEmailContext() and context.getEmailContext()

Runs only
when there
is an email
context
available,
such as
when the
event is
triggered
by an
incoming
email.

context.getEventType()
Returns the type of
event that triggered
the expression.

context.getEventType() == "ticket_created"

Runs only
when the
event was
a ticket
being
created.

context.getEventPerformer()
Returns the person
object for whoever
performed the event.

context.getEventPerformer().id == ticket.agent.id

Runs only
if the agent
assigned to
the ticket
is the same
person who
performed
the event.



context.getEventMethod()
Returns how the
event happened (e.g.
web, email, API).

context.getEventMethod() == "email"

Runs only
if the ticket
event was
performed
via email.

ticket.getCustomDataForField(ID).getData()

Gets the stored value
for a custom field,
including null/empty
checks.

(ticket.getCustomDataForField(416) !== null &&
ticket.getCustomDataForField(416).getData() !== "")
&& (ticket.getCustomDataForField(415) !== null &&
ticket.getCustomDataForField(415).getData() !== "")
&& (ticket.getCustomDataForField(416).getData() ===
ticket.getCustomDataForField(415).getData())

Runs only
if both
custom
fields 416
and 415
are filled in
and their
values are
identical.

Context Functions
These helper functions let you reference different aspects of the ticket event:

context.getPersonContext() → returns the person linked to the action (e.g. the agent or user).

context.getEmailContext() → used with hasEmailContext, gives details about the email
involved.

context.getEventType() → checks the type of event that triggered the rule.

context.getEventPerformer() → identifies who performed the event.

context.getEventMethod() → details the method of the event.

Summary
Check expressions are a powerful way to extend triggers when standard criteria aren’t enough. They let you:

Compare field values.

Restrict triggers by time.

Work with event and person context.


