-;_ Deskpro

Neuigkeiten > Product > DPQL v2

DPQL v2

2018-05-21 - Benedict Sycamore - Kommentare (0) - Product

As part of product release Deskpro 2018.1, we've introduced a whole new reporting system. You can learn more
about all that here.

This also means you can expect some changes and improvements to the way DPQL works in reports, and this
article has been written to simply explain each of those changes.

All DPQL functions start with DPQL_ prefix

To make it easy to determine which functions are DPQL-specific and which are part of standard MySQL
functions, DPQL functions now have to include the prefix 'DPQL '-e.g. DPQL_COUNT

This now means that functions without the prefix operate just as they would when using standard MySQL.

Support for subqueries

You can now nest a query inside a larger query. For example:

SELECT tickets.id

FROM tickets

WHERE tickets.id IN (
SELECT tickets.id
FROM tickets

WHERE tickets.ref LIKE 'AAAA-%'

Support for unions

You can now combine the results of two queries into a single query. For example:

SELECT tickets.id FROM (
(SELECT tickets.id FROM tickets)
UNION
(SELECT tickets.id FROM tickets)

)astl

https://support.deskpro.com/de
https://support.deskpro.com/de/news
https://support.deskpro.com/de/news/product
https://support.deskpro.com/de/news/posts/dpql-v2
https://support.deskpro.com/de/news/product
https://support.deskpro.com/en_GB/news/posts/new-reports-v2

No more DISPLAY line

Previously, in DPQL1, a query would start with ‘DISPLAY TABLE’ or the type of report you had selected to
display. This is no longer a feature. Admins now simply choose the type of graph as an option rather the it being
coded into the query itself.

New function ‘DPQL_JSON_EXTRACT’

This function operates in a similar way to MySQL's [J[SON_EXTRACT]. It lets you SELECT a field in the database
that is stored as JSON, and extract a specific value for display.

This function only works in the SELECT clause (i.e. a value you want to display) because the decoding only
happens in PHP. It can be used to support displaying specific data from a JSON blob.

New function 'DPQL_HIERARCHY'

Deskpro has a number of fields that have hierarchies such as Departments, Organizations, Categories, Products
and Custom choice fields. You can use DPQL HIERARCHY denote hierarchy in reports. This allows you to see a
total count for one field and all sub-fields. The below image demonstrates a few real life examples of what the
reporting will allow.

e DPQL HIERARCHY can only be used in a GROUP BY.
e DPQL HIERARCHY can only be used in the first group by. A currently limitation. You can't use it as a
secondary group by param.

The signature for DPQL_HIERARCHY is:

DPQL_HIERARCHY(field, minDepth, maxDepth)
The field can be any field in deskpro where hierarchy exists (custom fields, departments, orgs, etc).
minDepth is the minimum depth to show
o A minDepth of 1 means we'll show A in A>B>C. A minDepth of 2 means we'll show A>B in
A>B>C
maxDepth is how many levels to show.
o IfminDepth is 1 and maxDepth is one, then A>B=10 and A>C=5 would get rolled up into A=15
(i.e. we collapse the hierarchy into 1 level).
o If minDepth is 2 and maxDepth is 2, then we'd show A>B and A>C as separate things. If there
was A>C>X then the 'x' value would get rolled-up into the 'c' value. etc.

SELECT DPQL_COUNT() AS 'Number of Hotdogs'
FROM tickets
WHERE tickets.organization <> NULL AND tickets.custom_data[24] <> NULL

GROUP BY DPQL HIERARCHY(tickets.custom data[24], 1, 3) AS 'Type'

This example uses a custom field. See how the field has German > Frankfurter > Wurstchen, but on the report
we're limiting it to the top-level hotdog type.

https://dev.mysql.com/doc/refman/5.7/en/json-search-functions.html#function_json-extract

Options Normal

German
— Extrawurst
— Frankfurter
- — Wilrstchen]
Bratwurst
Rindswurst
Large
Enter a title No parent v Add
Default option:| Large v
180 ~
160 =
140
» 120
o I Bratwurst: 79
)
:I? 100 German / Extrawurst: 89
-
2 German / Frankfurter / wirstchen: 68
_g 80 -
£ B Large: 79
z
o B rormal: 90
I Rindswurst: 69
40 -
20
o -

Bratwurst German Large Mormal Rindswurst

New function: DPQL_HIERARCHY_DESCENDS_FROM

e DPQL HIERARCHY DESCENDS FROM can only be used in a WHERE clause

e DPQL HIERARCHY DESCENDS FROM limits what you want to see in a hierarchy. e.g. if you had
A>B>C>D and X>Y>Z you might only want to see values under A

e For example, DPQL_HIERARCHY DESCENDS_FROM(ticket.organization, 5) limits the query to
tickets with organizations set to 5 or anything below that.

A query could use this to limit all reports to tickets with the values that descend from the selected value.

SELECT DPQL COUNT() AS 'Open'
FROM tickets WHERE

tickets.status != 'resolved'

AND tickets.organization <> NULL
AND DPQL HIERARCHY DESCENDS FROM(tickets.custom data[#], ${variable})

GROUP BY tickets.organization.name AS 'Organization'

New Function: LAYER WITH

This function allows you to combine multiple result sets in a single query. For example, the results below are
generated by the following query.

30

5_

Department

SELECT
DPQL COUNT() AS 'Open Tickets',
tickets.organization.name AS 'Department’,
'Tickets' AS 'value axis title'

FROM tickets

WHERE
tickets.organization.name <> NULL
AND tickets.status IN (‘awaiting user', 'awaiting agent')

GROUP BY tickets.organization.name AS 'Department'
LAYER WITH

SELECT
DPQL COUNT() AS 'Closed Tickets',
tickets.organization.name AS 'Department'
FROM tickets
WHERE
tickets.organization.name <> NULL
AND tickets.status = 'resolved"

GROUP BY tickets.organization.name AS 'Department’

You can use LAYER WITH <BAR|LINE> to override the type of the layered graph. E.g. if the main graph is set to
show a BAR, you could layer on a LINE graph by using LAYER WITH LINE

If you just use LAYER WITH then the secondary graph will be displayed in the same chart type as the primary.

Changes to: DPQL_FORMAT

FORMAT now acts like it would when using MySQL, and old behaviour is achieved using DPQL FORMAT.
Signature: DPQL_FORMAT (value, formatType[, otherArgs]...)

e DPQL FORMAT(value, 'number', 2) - formats a value as a number. The third param is the number
of decimal places to show. e.g. 123000.4567 — 123,000.46

e DPQL_FORMAT (value, 'date', 'F') - formats the value as a date. The third param is the date
format. e.g. 2018-05-14 - May

e DPQL FORMAT(value, 'percent', 1) - formats a fractional number as an integer percentage. The
third param is the number of decimals to show (if not provided, defaults to 2). e.g. 0.755 = 75.5%

Changes to: DPQL_CONCAT

We have a new DPQL_CONCAT that works just like MySQL CONCAT, except that it functions within Deskpro
rather than the database.

This is because some values are raw values from the database, and some values are values that Deskpro needs
to render.

CONCAT is a mysql function — it works on raw values from the db. DPQL_CONCAT is a deskpro function, it works
on values we get out of the database.

SELECT CONCAT('£', DPQL_FORMAT(value, 'number', 2))

This does NOT work because MySQL cannot concat DPQL FORMAT — that value does not exist until Deskpro
gets involved because DPQL FORMAT is Deskpro function.

http://php.net/manual/en/function.date.php
http://php.net/manual/en/function.date.php

But you could do it this way:
SELECT DPQL _CONCAT('£', DPQL FORMAT(value, 'number', 2))
Because Deskpro is generating the value in both cases.

It's important to understand the MySQL step is separate from the Deskpro step. MySQL can't determine extra
information that gets added in the Deskpro step, because MySQL processes occur before Deskpro processes.

Custom field aliases

It's now possible to give a human "alias" to a custom field. In most places where you would need to refer to a
field ID (including reports and our API), you can now use an alias instead.

So tickets.custom data[123] can now be tickets.custom data[alias name]

SELECT AVG(tickets.custom data[deal value].value) AS 'Deal Value'
FROM tickets
WHERE
tickets.agent <> NULL
AND tickets.custom_data[deal value].value <> NULL
AND tickets.custom_data[deal value].value > 0

GROUP BY tickets.agent AS 'Lawyer

In order to use custom aliases, remember to determine them in the admin interface before using them in
reports.

Using the new 'simple stat' with DPQL

The new 'simple stat' widget type is useful for displaying simple performance data on dashboards.

665

tickets waiting

A simple way to use this stat to show tickets created this month through a DPQL query is:

SELECT DPQL COUNT() as 'stat value', 'created this month' as 'stat description'
FROM tickets

WHERE tickets.date created = %THIS MONTH%

There are a number of data and variations you can select to display:

e stat value — determines the large value shown

e stat description — determines the sub-line

e unit left and unit right are strings that go before/after the value. For example, if you want to
show a SUM or AVG value of a currency field, you can set the left unit to £. Or if the number you
calculated is a percentage, you could set the right unit to %.

e default value is what to show if stat value returns null. For example, in the above example, if no
tickets were created this month, then the count is null, and the report would show "No data". Sometimes
it's more useful to just show 0 instead of "No Data". So you coulduse ... '0' as 'default value'
to force 0 as the default value.

Gauge type

The new 'gauge' widget type is useful for displaying information where you want to see the current value of a
statistic against a range of possible values for the same statistic at any given time.

A simple way to use this stat to show the £ value of accumulated ticket charges this year through a DPQL query
is:

SELECT SUM(ticket_charges.amount) AS 'stat_value', 1000000 AS 'stat_total', DPQL CONCAT('£'",
DPQL_FORMAT(SUM(ticket_charges.amount), 'number’, 0), ' of £', DPQL_FORMAT (1000000, 'number, 0), '
budget') AS 'tooltip _text'

FROM ticket _charges

WHERE ticket _charges.ticket.date created = %THIS YEAR%

There are a number of data and variations you can select to display:

e stat value determines the value, where to "fill to" or where the needle points

e stat total determines the total value, displayed as the maximum value at the end of the gauge

e unit left and unit right are strings that go before/after the values. For example, if you want to
show a SUM or AVG value of a currency field, you can set the left unit to £. Or if the number you
calculated is a percentage, you could set the right unit to %.

e tooltip text is what to show when you hover your mouse over the gauge

Overriding labels & Tooltips

You can now select extra values in the query to override labels shown on axes, or what appears in 'tooltip' text.

25 —
w20 -

H Q

value title =z
Z 15

<
.
C
rl-ll
i

Q\Q-

’ @é‘ P
-;06)
Q

Q,a_tg gort irtment

In the SELECT clause, you can use the following to create labels and tooltips:

e tooltip text determines the tooltip text. Within the string you can use [[category]] as a
placeholder for the category (which is the x axis variable) and [[value]] as the value (which is the
value shown on the y axis- usually a count or sum etc).

e tooltip text template determines the tooltip text based on a template that we evaluate client-side.
See below for more on templates.

e value axis_title determines the title shown on . Usually this will be whatever you select the value
as, but you can override it here. e.g. SELECT DPQL_COUNT() AS 'example' will by default set the
title on the y axis to 'example'. Use value axis title to override this and name it accordingly.

e value label template sets the template for rendering values along the y axis

e category label template sets the template for rendering the categories along the x axis.

Templates

Templates are a way of making it easier to render values in different ways vs the "raw" value in DPQL.
Essentially, a template is a string that gets rendered through a simple template engine.

Templates apply only to bar and line charts. Here's an example setting the tooltip text using a template:

SELECT SUM(ticket charges.amount) as 'Invoiced Costs', 'Cost' AS 'value axis title', 'Invoiced:
{{formatCurrency value "GBP"}}' as 'tooltip text template'

FROM ticket charges

WHERE ticket_charges.ticket.organization <> NULL AND ticket charges.ticket.date created = %THIS YEAR%
AND ticket _charges.ticket.status IN (‘resolved', 'closed') GROUP BY ticket charges.ticket.organization AS
'Organization'

In the template string, {{anything in here}} is special:

e It can be a bare variable, which include {{value}} and {{category}}
e Or it can be a function:

o formatCurrency formats the value as a currency value. The first parameter used should be the
value to format, and the second is the specific currency to format. For example, if we wanted to
show £123.33 we'd use:

n {{formatCurrency 123.33 "GBP"}}

o formatNumber formats a number in ways according to toLocaleString. This would is most likely
used in advanced use-cases. The first parameter used should be the value, and the rest can be
found in this document. For example

n {{formatNumber value maximumFractionDigits=1}} would turn a value like 1
into 1.0 or a value of 223.34874 into 223.3 etc

o formatPercent rounds a number to an integer and adds a %

n {{formatPercent 5.5}} — would render as 6% etc.

o math carries out simple math. The first param is the value, then comes the operator, then comes

the right operator.
= {{math 100 "/" 5}} - 100 would render as 20.

You can also combine functions together with parenthesis. Here's an example combining formatNumber with
math:

SELECT AVG(tickets.custom data[rate responsiveness])*5 AS 'Responsiveness', 'Responsiveness:
{{formatNumber (math value "/" 5) minimumFractionDigits=0 maximumFractionDigits=1}} out of 5' as
'tooltip_text template'

FROM tickets

WHERE tickets.custom_data[rate responsiveness].value <> NULL AND tickets.custom_data[external lawyer]
<> NULL GROUP BY DPQL HIERARCHY(tickets.custom_data[external lawyer], 1) AS 'Firm'

If you use a template with LAYER WITH, then {{value}} and {{category}} correspond to the first initial
graph. {{0 value}} and {{0 category}} refers to the second graph; and the number increments for each
layer you add. So referring to the first graph would use value/category; the next layered one would be

0 _value/0_category, the one after that is 1 value/1 category, etc

You'd want to define a separate template in each LAYER WITH query to set their own tooltip or else they'd all
use the same one.

Here's an example of a template with four layers:

https://gist.github.com/chroder/70bde2256fe3d86fb6ca8141d62319da

Thanks for reading

If you are using Deskpro Cloud, we will roll out this update to your helpdesk soon.

If you are using Deskpro On-Premise, you can update your helpdesk to the latest version from your Admin
Interface.

For more information on product updates associated with this one, take a look at other updates and changes
included in the release of Deskpro 2018.1.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString
https://gist.github.com/chroder/70bde2256fe3d86fb6ca8141d62319da
https://support.deskpro.com/news/posts/717

