
Product > DPQL v2 < الاخبار

DPQL v2
Product - (٠) تعليقات - Benedict Sycamore - 2018-05-21

As part of product release Deskpro 2018.1, we've introduced a whole new reporting system. You can learn more
.about all that here

This also means you can expect some changes and improvements to the way DPQL works in reports, and this
.article has been written to simply explain each of those changes

All DPQL functions start with DPQL_ prefix
To make it easy to determine which functions are DPQL-specific and which are part of standard MySQL

functions, DPQL functions now have to include the prefix 'DPQL_' -e.g. DPQL_COUNT

.This now means that functions without the prefix operate just as they would when using standard MySQL

Support for subqueries
:You can now nest a query inside a larger query. For example

SELECT tickets.id

FROM tickets

) WHERE tickets.id IN

SELECT tickets.id

FROM tickets

'%-WHERE tickets.ref LIKE 'AAAA

(

Support for unions
:You can now combine the results of two queries into a single query. For example

) SELECT tickets.id FROM

(SELECT tickets.id FROM tickets)

UNION

(SELECT tickets.id FROM tickets)

as t1 (

https://support.deskpro.com/ar
https://support.deskpro.com/ar/news/product
https://support.deskpro.com/ar/news/posts/dpql-v2
https://support.deskpro.com/ar/news
https://support.deskpro.com/ar/news/product
https://support.deskpro.com/en_GB/news/posts/new-reports-v2

No more DISPLAY line
Previously, in DPQL1, a query would start with ‘DISPLAY TABLE’ or the type of report you had selected to

display. This is no longer a feature. Admins now simply choose the type of graph as an option rather the it being
.coded into the query itself

’New function ‘DPQL_JSON_EXTRACT
This function operates in a similar way to MySQL's [JSON_EXTRACT]. It lets you SELECT a field in the database

.that is stored as JSON, and extract a specific value for display

This function only works in the SELECT clause (i.e. a value you want to display) because the decoding only
.happens in PHP. It can be used to support displaying specific data from a JSON blob

'New function 'DPQL_HIERARCHY
Deskpro has a number of fields that have hierarchies such as Departments, Organizations, Categories, Products
and Custom choice fields. You can use DPQL_HIERARCHY denote hierarchy in reports. This allows you to see a

total count for one field and all sub-fields. The below image demonstrates a few real life examples of what the
.reporting will allow

.DPQL_HIERARCHY can only be used in a GROUP BY
DPQL_HIERARCHY can only be used in the first group by. A currently limitation. You can't use it as a

.secondary group by param

:The signature for DPQL_HIERARCHY is

(DPQL_HIERARCHY(field, minDepth, maxDepth
.(The field can be any field in deskpro where hierarchy exists (custom fields, departments, orgs, etc

minDepth is the minimum depth to show
A minDepth of 1 means we'll show A in A>B>C. A minDepth of 2 means we'll show A>B in

A>B>C
.maxDepth is how many levels to show

If minDepth is 1 and maxDepth is one, then A>B=10 and A>C=5 would get rolled up into A=15
.((i.e. we collapse the hierarchy into 1 level

If minDepth is 2 and maxDepth is 2, then we'd show A>B and A>C as separate things. If there
.was A>C>X then the 'x' value would get rolled-up into the 'c' value. etc

'SELECT DPQL_COUNT() AS 'Number of Hotdogs

FROM tickets

WHERE tickets.organization <> NULL AND tickets.custom_data[24] <> NULL

'GROUP BY DPQL_HIERARCHY(tickets.custom_data[24], 1, 3) AS 'Type

This example uses a custom field. See how the field has German > Frankfurter > Wurstchen, but on the report
.we're limiting it to the top-level hotdog type

https://dev.mysql.com/doc/refman/5.7/en/json-search-functions.html#function_json-extract

New function: DPQL_HIERARCHY_DESCENDS_FROM
DPQL_HIERARCHY_DESCENDS_FROM can only be used in a WHERE clause

DPQL_HIERARCHY_DESCENDS_FROM limits what you want to see in a hierarchy. e.g. if you had
A>B>C>D and X>Y>Z you might only want to see values under A

For example, DPQL_HIERARCHY_DESCENDS_FROM(ticket.organization, 5) limits the query to
.tickets with organizations set to 5 or anything below that

.A query could use this to limit all reports to tickets with the values that descend from the selected value

 'SELECT DPQL_COUNT() AS 'Open

FROM tickets WHERE

'tickets.status != 'resolved

AND tickets.organization <> NULL

({AND DPQL_HIERARCHY_DESCENDS_FROM(tickets.custom_data[#], ${variable

'GROUP BY tickets.organization.name AS 'Organization

New Function: LAYER WITH
This function allows you to combine multiple result sets in a single query. For example, the results below are

.generated by the following query

SELECT

,'DPQL_COUNT() AS 'Open Tickets

,'tickets.organization.name AS 'Department

'Tickets' AS 'value_axis_title'

FROM tickets

WHERE

tickets.organization.name <> NULL

('AND tickets.status IN ('awaiting_user', 'awaiting_agent

'GROUP BY tickets.organization.name AS 'Department

LAYER WITH

SELECT

,'DPQL_COUNT() AS 'Closed Tickets

'tickets.organization.name AS 'Department

FROM tickets

WHERE

tickets.organization.name <> NULL

'AND tickets.status = 'resolved

'GROUP BY tickets.organization.name AS 'Department

You can use LAYER WITH <BAR|LINE> to override the type of the layered graph. E.g. if the main graph is set to
show a BAR, you could layer on a LINE graph by using LAYER WITH LINE

.If you just use LAYER WITH then the secondary graph will be displayed in the same chart type as the primary

Changes to: DPQL_FORMAT
.FORMAT now acts like it would when using MySQL, and old behaviour is achieved using DPQL_FORMAT

(...[Signature: DPQL_FORMAT(value, formatType[, otherArgs

DPQL_FORMAT(value, 'number', 2) → formats a value as a number. The third param is the number
of decimal places to show. e.g. 123000.4567 → 123,000.46

DPQL_FORMAT(value, 'date', 'F') → formats the value as a date. The third param is the date
format. e.g. 2018-05-14 → May

DPQL_FORMAT(value, 'percent', 1) → formats a fractional number as an integer percentage. The
third param is the number of decimals to show (if not provided, defaults to 2). e.g. 0.755 → 75.5%

Changes to: DPQL_CONCAT
We have a new DPQL_CONCAT that works just like MySQL CONCAT, except that it functions within Deskpro

.rather than the database

This is because some values are raw values from the database, and some values are values that Deskpro needs
.to render

CONCAT is a mysql function — it works on raw values from the db. DPQL_CONCAT is a deskpro function, it works
.on values we get out of the database

((SELECT CONCAT('£', DPQL_FORMAT(value, 'number', 2

This does NOT work because MySQL cannot concat DPQL_FORMAT — that value does not exist until Deskpro
.gets involved because DPQL_FORMAT is Deskpro function

http://php.net/manual/en/function.date.php
http://php.net/manual/en/function.date.php

:But you could do it this way

((SELECT DPQL_CONCAT('£', DPQL_FORMAT(value, 'number', 2

.Because Deskpro is generating the value in both cases

It's important to understand the MySQL step is separate from the Deskpro step. MySQL can't determine extra
.information that gets added in the Deskpro step, because MySQL processes occur before Deskpro processes

Custom field aliases
It's now possible to give a human "alias" to a custom field. In most places where you would need to refer to a

.field ID (including reports and our API), you can now use an alias instead

[So tickets.custom_data[123] can now be tickets.custom_data[alias_name

 'SELECT AVG(tickets.custom_data[deal_value].value) AS 'Deal Value

FROM tickets

WHERE

tickets.agent <> NULL

AND tickets.custom_data[deal_value].value <> NULL

AND tickets.custom_data[deal_value].value > 0

'GROUP BY tickets.agent AS 'Lawyer

In order to use custom aliases, remember to determine them in the admin interface before using them in
.reports

Using the new 'simple stat' with DPQL
.The new 'simple stat' widget type is useful for displaying simple performance data on dashboards

:A simple way to use this stat to show tickets created this month through a DPQL query is

 'SELECT DPQL_COUNT() as 'stat_value', 'created this month' as 'stat_description

 FROM tickets

%WHERE tickets.date_created = %THIS_MONTH

:There are a number of data and variations you can select to display

stat_value — determines the large value shown
stat_description — determines the sub-line

unit_left and unit_right are strings that go before/after the value. For example, if you want to
show a SUM or AVG value of a currency field, you can set the left unit to £. Or if the number you

.% calculated is a percentage, you could set the right unit to
default_value is what to show if stat_value returns null. For example, in the above example, if no

tickets were created this month, then the count is null, and the report would show "No data". Sometimes
it's more useful to just show 0 instead of "No Data". So you could use ... '0' as 'default_value'

.to force 0 as the default value

Gauge type
The new 'gauge' widget type is useful for displaying information where you want to see the current value of a

.statistic against a range of possible values for the same statistic at any given time

A simple way to use this stat to show the £ value of accumulated ticket charges this year through a DPQL query
:is

SELECT SUM(ticket_charges.amount) AS 'stat_value', 1000000 AS 'stat_total', DPQL_CONCAT('£',
DPQL_FORMAT(SUM(ticket_charges.amount), 'number', 0), ' of £', DPQL_FORMAT(1000000, 'number', 0), '

'budget') AS 'tooltip_text

FROM ticket_charges

%WHERE ticket_charges.ticket.date_created = %THIS_YEAR

:There are a number of data and variations you can select to display

stat_value determines the value, where to "fill to" or where the needle points
stat_total determines the total value, displayed as the maximum value at the end of the gauge

unit_left and unit_right are strings that go before/after the values. For example, if you want to
show a SUM or AVG value of a currency field, you can set the left unit to £. Or if the number you

.% calculated is a percentage, you could set the right unit to
tooltip_text is what to show when you hover your mouse over the gauge

Overriding labels & Tooltips
.You can now select extra values in the query to override labels shown on axes, or what appears in 'tooltip' text

:In the SELECT clause, you can use the following to create labels and tooltips

tooltip_text determines the tooltip text. Within the string you can use [[category]] as a
placeholder for the category (which is the x axis variable) and [[value]] as the value (which is the

.(value shown on the y axis- usually a count or sum etc
tooltip_text_template determines the tooltip text based on a template that we evaluate client-side.

.See below for more on templates
value_axis_title determines the title shown on . Usually this will be whatever you select the value

as, but you can override it here. e.g. SELECT DPQL_COUNT() AS 'example' will by default set the
.title on the y axis to 'example'. Use value_axis_title to override this and name it accordingly

value_label_template sets the template for rendering values along the y axis
.category_label_template sets the template for rendering the categories along the x axis

Templates
Templates are a way of making it easier to render values in different ways vs the "raw" value in DPQL.

.Essentially, a template is a string that gets rendered through a simple template engine

:Templates apply only to bar and line charts. Here's an example setting the tooltip text using a template

SELECT SUM(ticket_charges.amount) as 'Invoiced Costs', 'Cost' AS 'value_axis_title', 'Invoiced:
'{{formatCurrency value "GBP"}}' as 'tooltip_text_template

FROM ticket_charges

WHERE ticket_charges.ticket.organization <> NULL AND ticket_charges.ticket.date_created = %THIS_YEAR%
AND ticket_charges.ticket.status IN ('resolved', 'closed') GROUP BY ticket_charges.ticket.organization AS

''Organization

:In the template string, {{anything in here}} is special

{{It can be a bare variable, which include {{value}} and {{category
:Or it can be a function

formatCurrency formats the value as a currency value. The first parameter used should be the
value to format, and the second is the specific currency to format. For example, if we wanted to

:show £123.33 we'd use
{{"formatCurrency 123.33 "GBP}}

formatNumber formats a number in ways according to toLocaleString. This would is most likely
used in advanced use-cases. The first parameter used should be the value, and the rest can be

found in this document. For example
formatNumber value maximumFractionDigits=1}} would turn a value like 1}}

into 1.0 or a value of 223.34874 into 223.3 etc
% formatPercent rounds a number to an integer and adds a

.formatPercent 5.5}} — would render as 6% etc}}
math carries out simple math. The first param is the value, then comes the operator, then comes

.the right operator
.math 100 "/" 5}} → 100 would render as 20}}

You can also combine functions together with parenthesis. Here's an example combining formatNumber with
:math

SELECT AVG(tickets.custom_data[rate_responsiveness])*5 AS 'Responsiveness', 'Responsiveness:
{{formatNumber (math value "/" 5) minimumFractionDigits=0 maximumFractionDigits=1}} out of 5' as

''tooltip_text_template

FROM tickets

WHERE tickets.custom_data[rate_responsiveness].value <> NULL AND tickets.custom_data[external_lawyer]
'<> NULL GROUP BY DPQL_HIERARCHY(tickets.custom_data[external_lawyer], 1) AS 'Firm

If you use a template with LAYER WITH, then {{value}} and {{category}} correspond to the first initial
graph. {{0_value}} and {{0_category}} refers to the second graph; and the number increments for each

layer you add. So referring to the first graph would use value/category; the next layered one would be
0_value/0_category, the one after that is 1_value/1_category, etc

You'd want to define a separate template in each LAYER WITH query to set their own tooltip or else they'd all
.use the same one

:Here's an example of a template with four layers

https://gist.github.com/chroder/70bde2256fe3d86fb6ca8141d62319da

Thanks for reading
.If you are using Deskpro Cloud, we will roll out this update to your helpdesk soon

If you are using Deskpro On-Premise, you can update your helpdesk to the latest version from your Admin
.Interface

For more information on product updates associated with this one, take a look at other updates and changes
.included in the release of Deskpro 2018.1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/toLocaleString
https://gist.github.com/chroder/70bde2256fe3d86fb6ca8141d62319da
https://support.deskpro.com/news/posts/717

