
Developer & Reporting > Reports : DPQL Reference < قاعدة المعلومات

Reports : DPQL Reference
Developer & Reporting - (٠) تعليقات - Matthew Wray - 2023-09-27

Anatomy of a DPQL query
Reports in the report builder are written using the Deskpro Query
Language, known as DPQL. It is similar to SQL, but you don’t need to know
.SQL to use it

Select any Stat in the Stat Builder and click the Edit Stat button to see
.its DPQL query

:DPQL queries consists of a series of clauses

SELECT select expression
FROM database table
[WHERE conditions]
[SPLIT BY split fields]
[GROUP BY group fields]
[ORDER BY order fields]
[[[LIMIT amount [OFFSET offset amount

[LAYER WITH another query]

[IN subquery]

.Clauses in [square brackets] are optional

.Italic text is a placeholder for a value that you enter

SELECT
The SELECT clause works with the WHERE clause to define what
information you want your report to include. It often contains field
references which specify the data you want to retrieve from the table
.you choose in the FROM clause

Your SELECT clause would be a comma-separated list of column
:references

SELECT tickets.id, tickets.subject, tickets.person,

https://support.deskpro.com/ar
https://support.deskpro.com/ar/kb/developer-reporting
https://support.deskpro.com/ar/kb/articles/reports-dpql-reference-1
https://support.deskpro.com/ar/kb
https://support.deskpro.com/ar/kb/developer-reporting

tickets.department, tickets.date_created, tickets.agent

.The SELECT clause can also use DPQL functions

For example, suppose you didn’t want a detailed table of all matching
tickets, just the total number. You would use the DPQL_COUNT() function
.to count the total number of matching tickets

()SELECT DPQL_COUNT

In table output, the header text for a column is automatically derived from
the SELECT used to produce the column. This may not always result in a
good column name; for example, if you just used SELECT DPQL_COUNT(),
:you’ll produce a table like this

.You can use an alias to specify a better name for a column

'DPQL_COUNT() AS 'Total Created

:would make the result display like this

FROM
The MySQL database which stores all your helpdesk data is organised into
a series of tables. For example, the tickets table stores information about
.tickets

The FROM clause specifies which database table your DPQL query is
.asking about. You can only pick one table

All column references in the query must start with the table name
.specified in the FROM clause

.The tables available are listed here

WHERE
The conditions in the optional WHERE clause are used to limit what data is
.displayed or used in a calculation

For example, if your query was

SELECT tickets.id
FROM tickets

https://support.deskpro.com/en-US/guides/reports-guide/dpql-field-reference

.you’d get a table with all ticket’s ID

:But with

SELECT tickets.id
FROM tickets
'WHERE tickets.status = 'awaiting_agent

you’d get a table with the IDs of just the tickets with a status of Awaiting
.Agent

Conditions can be joined by operators such as AND, OR, NOT, IN and
.parentheses (brackets) to make complex expressions

IN is useful if you want to match any one of a number of different values.
:For example

('WHERE tickets.status IN ('awaiting_agent','awaiting_user

.will return all tickets with either Awaiting Agent or Awaiting User status

tickets.labels.label != NULL

SPLIT BY
The optional SPLIT BY clause enables you split the results into separate
.tables/graphs by providing split field values

For example, if you wanted to display each agent’s matching tickets for a
:query in a separate table, you’d use

SPLIT BY tickets.agent

:and the result would look like this

.with a separate table for each agent
You can use multiple split fields by providing a comma-separated list of
expressions. This will result in separate tables for each combination of of
the fields you provide, with separate tables for Agent A/Department A,
.Agent A/Department B, Agent B/Department A, etc

GROUP BY
The GROUP BY clause is used to group records that have the same values
.for the specified fields

:For example, you can group by ticket labels

SELECT DPQL_COUNT() AS 'Total Tickets'

FROM tickets
WHERE tickets.status = 'awaiting_agent'
GROUP BY tickets.labels

:In the output, tickets with the same label are grouped together

You can also use groups to do calculations such as determining totals and
.averages

The group by fields will automatically be displayed in the resulting table,
.so there is no need to add them to the SELECT clause

As in the SELECT clause, group fields can be aliased with AS 'Label' to
.change the name of the table header row

To create a matrix table, use the DPQL_MATRIX() function in the GROUP BY
clause to specify two groups. The first specifies the values going across
the top of the table, while the second controls the values going down the
.left side

ORDER BY
The ORDER BY clause determines how the rows will be ordered when they
are returned. If no order is given, the results will be displayed in an
.undefined order

The order fields are comma-separated expressions. Ordering will happen
across the fields from left to right (ordering by the first expression, then
using the second to resolve ties, and so on). Each expression may
optionally have ASC or DESC appended to it to control whether ordering is in ascending
.(or descending order. (Ascending is the default if no direction is specified

:For example

ORDER BY SUM(tickets.total_user_waiting) DESC

would order a list of users or organizations by their total waiting time, with
.the highest waiting time at the top

The ORDER BY clause can access aliases that were specified in the SELECT
or GROUP BY clauses using the syntax @'alias' (for example: @'Total
Tickets'). Referencing an alias causes the results to be ordered as if you had written the
.aliased expression in the ORDER BY clause

For example, suppose you want to make a table showing how many
:tickets each agent has, sorted in descending order

SELECT DPQL_COUNT() AS 'Tickets'
FROM tickets
GROUP BY tickets.agent
ORDER BY @'Tickets' DESC

LIMIT / OFFSET
The LIMIT clause enables you to limit the number of rows returned. If you
don’t specify a limit amount, a default limit of 2500 will be used to ensure
.correct operation

You can use the OFFSET clause to skip over a certain number of rows
.before returning the LIMIT amount of rows. The OFFSET defaults to 0

LAYER WITH
LAYER WITH allows you to combine two different queries into one. For
:example

SELECT DPQL_COUNT(*), tickets.department
FROM tickets
WHERE tickets.date_created = %TODAY%
GROUP BY tickets.department

LAYER WITH

SELECT DPQL_COUNT(*), tickets.department
FROM tickets
WHERE tickets.date_created = %YESTERDAY%
GROUP BY tickets.department

IN
:You can use IN to create subqueries. For example

SELECT tickets.id
FROM tickets
WHERE tickets.id IN (
 SELECT tickets.id
 FROM tickets
'%- WHERE tickets.ref LIKE 'AAAA
(

General expression format
Most clauses of a DPQL statement accept a general expression format.
.You can use expressions to carry out more complicated queries

Complex expressions are made up of smaller, simpler expressions.
:Expressions are made up of the following components

Details Example Type

Simple, literal references to
integer or decimal values

37.4 ,5 Numbers

Strings are literal references to
text. These will commonly be

used in tests/comparisons and
.aliases

”string’ or “string‘ Strings

You can use this in tests to check
whether a certain value exists. If

a certain value has been set, it
.will be not equal to NULL

tickets.labels.label != NULL Null

Parentheses are used to enforce
the order in which the

.expression is evaluated

tickets)
+ chat_conversations)/agents

Parentheses

Column references directly
retrieve data from your

helpdesk. tickets.subject and
tickets.agent.name are both

valid column references. You can
use multiple column parts to
combine data from different

tables based on a shared field
between them (the equivalent of

an SQL join). For example,
tickets.person.organization.name

which would retrieve the name
of the organization the person
that started the ticket belongs

.to

[…table.col[.col2 Column
references

These are useful functions, for
example doing calculations on

the inputs (arguments) you give
them, changing formatting, or

retrieving information. COUNT()
is a function. Some functions

don’t need any input, e.g.
CURDATE() just gets the current

.date

COUNT(), CURDATE(),
(MATRIX(group X, group y

Function
calls

Enable you to compare two
expressions

e.g. tickets.count_agent_replies
>= 10 checks if the number of

agent replies on a ticket is
greater than or equal to 10. If

the comparison is true, the value
of the comparison = 1. If it’s

.false, it = 0

,> ,< ,=< ,=! ,= (expression)
=>

Comparisons

Placeholders are dynamic
elements of a DPQL query that

are automatically updated to the
appropriate value when the

query is run. They are useful in
comparisons e.g. you can use

tickets.created_date =
%PAST_7_DAYS% would match
tickets created over the last 7

days. Note that these are
relative to the local time, e.g.
%TODAY% means the current

day in the timezone set in your
.agent preferences

%TODAY%, %LAST_YEAR% Placeholders

Used to logically combine two
.expressions

AND, OR Logic

Date and time references
:There are two ways to reference dates and times in your queries

absolute dates/times: e.g. 31st October 2013, or 11am on 1 May
2014

%relative time periods using placeholders: e.g. %LAST_WEEK

To avoid confusion, it’s best to avoid combining absolute and relative
.dates/times in one query

Absolute dates and times
:Absolute dates/times can be referenced in two formats

YYYY-MM-DD - e.g. 2013-10-31; refers to a date only. This implicitly has a time of
.00:00:00 of the specified day

YYYY-MM-DD HH:MM:SS - e.g. 2012-10-31 23:35:52; refers to a date and a
.specific time in 24-hour format

Note that you must specify these dates in the UTC timezone - however,
the results returned will be shown adjusted to your timezone (as set in

.(the Preferences section of the agent interface

This is an example DPQL query to list the tickets created from October 1st
:to 15th, 2012 in UTC

SELECT tickets.id
 FROM tickets
 WHERE tickets.date_created >= '2012-10-01'
' AND tickets.date_created < '2012-10-16

In date/time comparisons, > (greater than) matches dates/times that
.are later, and < (less than) matches dates/times earlier

You can add or subtract periods of time using the MySQL INTERVAL
:argument. For example

INTERVAL 2 WEEK + '2012-10-01'

.means a date/time two weeks after October 1st 2012

You can use INTERVAL 4 HOUR, INTERVAL 3 DAY, INTERVAL 1
.MONTH, INTERVAL 2 YEAR etc

This is useful when adjusting absolute dates to match your timezone. If
you wanted to adjust the above example query to find tickets created from
:October 1st to 15th Eastern Standard Time, you could change it to

WHERE tickets.date_created >= '2012-10-01' + INTERVAL 5 HOUR
 AND tickets.date_created < '2012-10-16' + INTERVAL 5 HOUR

.This adjusts the times from UTC to 5 hours later, ie EST

A timezone that is behind UTC needs the time difference added to the
comparison date/time; a timezone that is ahead needs the time difference
.subtracted

Relative dates with placeholders
It’s often more useful to have a report that matches helpdesk data for a
relative time period, e.g. the current week or the last month, rather than
.specific dates

You can write a report like this using date placeholders such
.%as %LAST_WEEK

:For example, if your WHERE clause is

%WHERE tickets.date_created = %PAST_24_HOURS

it will match all the tickets created within the 24 hours before you run the
.query

Note that you use = (equals sign) with placeholders, not < or > as you do
.with absolute dates/times

Placeholders use your timezone, as set in your agent
.account Preferences

For example, if you run a query to find all the tickets created %TODAY%, it
.will match all the tickets since the current day began in your timezone

If there isn’t a placeholder for the interval you need, you can use the SQL
.NOW function to get the current date, then subtract an INTERVAL

List of date placeholders

.A range covering any date %EVER%

A range covering the entirety of the previous
week, based on a new week starting on a

Monday. For example, if today is Wednesday
the 12th, this will match Monday the 3rd to

.Sunday the 9th

%LAST_WEEK%

A range covering the entirety of the previous
month. For example, if today is any day in

September 2012, this placeholder will match
.all of August 2012

%LAST_MONTH%

A range covering the entirety of the previous
year. For example, if today is any day in 2012,

.this placeholder will match all of 2011

%LAST_YEAR%

A range covering the hour prior to the time
.when the report is run

%PAST_HOUR%

A range covering the 12 hours prior to the time
.when the report is run

%PAST_12_HOURS%

A range covering from exactly 24 hours ago
.until when the report is run

%PAST_24_HOURS%

A range covering the 7 full days prior to the
.day when the report is run

%PAST_7_DAYS%

A range covering the 30 full days prior to the
.day when the report is run

%PAST_30_DAYS%

A range covering the 6 months prior to the day
.when the report is run

%PAST_6_MONTHS%

A range covering the 12 months prior to the
.day when the report is run

%PAST_12_MONTHS%

A range covering the entirety of the current
week, from 00:00 on the first day until 23:59

on the last day. Weeks are assumed to start on
a Monday and end on a Sunday

%THIS_WEEK%

A range covering the entirety of the current
month, from 00:00 on the first day until 23:59

.on the last day

%THIS_MONTH%

A range covering the entirety of the current
calendar year, from 00:00 on the first day until

.23:59 on the last day

%THIS_YEAR%

A range covering the entirety of the current
.day

%TODAY%

.A range covering the entirety of the next day %TOMORROW%

A range covering the entirety of the previous
.day

%YESTERDAY%

Remember, placeholders use your timezone, as set in your agent
.account Preferences

If you have agents in different timezones, they can get different results
.from queries that use date placeholders

Dates from custom fields
If you’re retrieving a date stored in a custom field, it is stored as an
integer timestamp rather than real date types, so you need to pass it
:.through the FROM_UNIXTIME function first, e.g

SELECT
 DATE_FORMAT(FROM_UNIXTIME(tickets.custom_data[1]), '%Y-%m-%d') AS
''Date

List of functions

Counts the total number of
rows matched by the query

or current group. If a
condition is provided,

counts the number of rows
in the query or current

group that match the
.condition

([DPQL_COUNT([condition

Counts the total number
distinct values for the given
expression within the rows

matched by the query or
.current group

(DPQL_COUNT_DISTINCT(expression

Gets the current date in the
time zone of the person

.running the query

()DPQL_CURDATE

Gets the current time in the
time zone of the person

.running the query

()DPQL_CURTIME

Groups a date
offset/difference in seconds

into human-readable ranges
(0–15 minutes, 15–30

.(minutes, etc

(DPQL_DATE_OFFSET_GROUP(seconds

Displays the difference
between the two provided
dates as human-readable

ranges (0–15 minutes,
.(15–30 minutes, etc

DPQL_DATE_OFFSET_GROUP(to date,
(from date

formats the value into the
specified format. Possible
formats include boolean,

number, numberraw,
datetime, date, time, year,

.percent, string

(DPQL_FORMAT(value, format

This function operates in a
similar way to MySQL's

JSON_EXTRACT. It lets you
SELECT a field in the

database that is stored as
JSON, and extract a specific

.value for it for display

DPQL_JSON_EXTRACT

Links to value using the URL
provided in link.

Placeholders in link are
replaced by the additional

params. Placeholder values
should be represented in

.sprintf format

([..DPQL_LINK(value, link[, params

If both provided groups are
non-null creates a matrix

table from them. Otherwise,
it creates a standard

.grouped table

(DPQL_MATRIX(group X, group Y

Gets the current date and
time in the time zone of the

.person running the query

()DPQL_NOW

determines the percentage
of total rows or rows within

the current group that
match the condition The

results are displayed as a
percentage with decimals

controlling the precision. 2
decimals are shown by

.default

([DPQL_PERCENT(condition[, decimals

gets the sql but ensures
that printed is used if the
value is ever going to be
displayed. This is mostly
helpful in the GROUP BY

clause where you need to
group on one expression
but display the results of

.another

(DPQL_PERCENT(sql, printed

converts date to UTC from
the current person’s time

.zone

(DPQL_TO_UTC(date

ensures that all dates and
times within this function
are calculated using UTC.

This can increase
.performance

(DPQL_UTC(expression

A large number of functions are also available that have the exact same
: behavior as their

ABS''
'ACOS'
'ADDDATE'
'ADDTIME'
'ASCII'
'ASIN'
'ATAN'
'ATAN2'
'AVG'
'BIN'
'BIT_AND'
'BIT_COUNT'
'BIT_LENGTH'
'BIT_OR'
'BIT_XOR'
'CEIL'
'CEILING'
'CHAR'
'CHAR_LENGTH'
'CHARACTER_LENGTH'
'COALESCE'
'CONCAT'
'CONCAT_WS'
'CONV'
'COS'
'COT'
'CRC32'
'DATE_FORMAT'
'DATEDIFF'
'DAYOFYEAR'
'DAY'

'DEGREES'
'ELT'
'EXP'
'EXPORT_SET'
'FIELD'
'FIND_IN_SET'
'FLOOR'
'FORMAT'
'FROM_DAYS'
'FROM_UNIXTIME'
'GREATEST'
'GROUP_CONCAT'
'HEX'
'IF'
'IFNULL'
'INET_ATON'
'INET_NTOA'
'INSERT'
'INSTR'
'INTERVAL'
'ISNULL'
'LAST_DAY'
'LCASE'
'LEAST'
'LEFT'
'LENGTH'
'LN'
'LOCATE'
'LOG10'
'LOG2'
'LOG'
'LOWER'
'LPAD'
'LTRIM'
'MAKE_SET'
'MAKEDATE'
'MAKETIME'
'MAX'
'MICROSECOND'
'MID'
'MIN'
'MOD'
'NOW'

'NULLIF'
'OCT'
'OCTET_LENGTH'
'ORD'
'PERIOD_ADD'
'PERIOD_DIFF'
'POW'
'POWER'
'QUARTER'
'RADIANS'
'RAND'
'REPEAT'
'REPLACE'
'REVERSE'
'RIGHT'
'ROUND'
'RPAD'
'RTRIM'
'SEC_TO_TIME'
'SECOND'
'SIGN'
'SIN'
'SOUNDEX'
'SPACE'
'SQRT'
'STDDEV_POP'
'STDDEV_SAMP'
'STR_TO_DATE'
'STRCMP'
'SUBDATE'
'SUBSTR'
'SUBSTRING'
'SUBSTRING_INDEX'
'SUBTIME'
'SUM'
'TAN'
'TIME'
'TIME_FORMAT'
'TIME_TO_SEC'
'TIMEDIFF'
'TIMESTAMP'
'TO_DAYS'
'TO_SECONDS'

'TRIM'
'TRUNCATE'
'UCASE'
'UNHEX'
'UNIX_TIMESTAMP'
'UPPER'
'UTC_DATE'
'UTC_TIME'
'UTC_TIMESTAMP'
'VAR_POP'
'VAR_SAMP'
'WEEK'
'WEEKDAY'
'WEEKOFYEAR'
'YEARWEEK'
'CURRENT_DATE'
'CURRENT_TIME'
'CURRENT_TIMESTAMP'
 ''CONVERT_TZ

Variables
When creating custom reports, you can set up specific values to be
.dynamically replaced by the user’s selection from a pull-down menu

The same mechanism is used in the built-in reports which have pulldowns
.to choose a date range, ticket property, grouping field, order, etc

:Each variable has two components
The title - this is how you define the title of the variable. For example,
adding articles.views.date_created = ${date} to a query, would make
.${date} the title of the variable for dynamic replacement

The query - this is where the actual variable is defined to run the correct
query. You can build these queries using the variable builder by clicking
.'the 'add variable button

:The available variables are as follows

Date Ranges
 :Possible defaults

today, yesterday, this_week, this-month, this_year, last_week, last_month,

last_year, past_24_hours, past_7_days, past_30_days, ever

Ticket Statuses
:Possible defaults

awaiting_user, awaiting_agent, unresolved, resolved, hidden, any

Field Groups
:Possible defaults

department, agent, agent_team, person, organization, language,
usergency, category, priority, workflow, sla, sla_status, hour_created,
day_week_created, day_month_created, month_created,
year_created, ticketfield# (for custom ticket fields), personfield# (for
custom person fields), orgfield# (for custom organization fields), none

Ordering
:Possible defaults

date_created_asc, date_created_desc, last_agent_reply_asc,
last_agent_reply_desc, last_user_reply_asc, last_user_reply_desc,
total_waiting_asc, total_waiting_desc

